#Libraries and functions
library(truncnorm)
library(dplyr)
library(ggplot2)
source("Homework9.R")
Question #1
#Collecting parameters
f1 <- Data_Parameters(my_data =ALW_CPUE_basin)
#Creating fake data using real parameters
f2 <- Fake_Data(nMean = f1$mean, nSD = f1$sd, nSize = f1$count)
#Running ANOVA and creaing box plot of fake data
f3 <- ANO_model_figure(modelCPUE = f2$modelCPUE, ANOdata = f2, TGroup = f2$TGroup)
## Df Sum Sq Mean Sq F value Pr(>F)
## TGroup 2 140974 70487 5.406 0.00488 **
## Residuals 342 4459308 13039
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Question #2
#Re-ordering North, Central, South Main Lake on boxplot
f4 <- Fake_Data_ordered(nMean = f1$mean, nSD = f1$sd, nSize = f1$count)
#Adding Tukey test to statistical analyses
f5 <-ANO_model_figure_PlusTukey(modelCPUE = f4$modelCPUE, ANOdata = f4, TGroup = f4$TGroup)
## Df Sum Sq Mean Sq F value Pr(>F)
## TGroup 2 296917 148458 12.2 7.62e-06 ***
## Residuals 342 4161586 12168
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = modelCPUE ~ TGroup, data = ANOdata)
##
## $TGroup
## diff lwr upr p adj
## Central Main Lake-North Main Lake 13.50162 -21.79398 48.79722 0.6403810
## South Main Lake-North Main Lake -75.44462 -114.62673 -36.26251 0.0000240
## South Main Lake-Central Main Lake -88.94624 -135.44810 -42.44438 0.0000274