#Libraries and data
library(dplyr)
library(tidyverse)
data("iris")
Question 1
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
There are 150 observations and 5 variables
Question 2
iris1 <- iris %>%
filter(Species == "virginica"| Species == "versicolor") %>%
filter(Sepal.Length > 6 & Sepal.Width >2.5)
str(iris1)
## 'data.frame': 56 obs. of 5 variables:
## $ Sepal.Length: num 7 6.4 6.9 6.5 6.3 6.6 6.1 6.7 6.1 6.1 ...
## $ Sepal.Width : num 3.2 3.2 3.1 2.8 3.3 2.9 2.9 3.1 2.8 2.8 ...
## $ Petal.Length: num 4.7 4.5 4.9 4.6 4.7 4.6 4.7 4.4 4 4.7 ...
## $ Petal.Width : num 1.4 1.5 1.5 1.5 1.6 1.3 1.4 1.4 1.3 1.2 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 2 2 2 2 2 2 2 2 2 ...
There are 56 observations of 5 variables
Question 3
iris2 <- iris1 %>%
select(Species, Sepal.Length, Sepal.Width)
str(iris2)
## 'data.frame': 56 obs. of 3 variables:
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ Sepal.Length: num 7 6.4 6.9 6.5 6.3 6.6 6.1 6.7 6.1 6.1 ...
## $ Sepal.Width : num 3.2 3.2 3.1 2.8 3.3 2.9 2.9 3.1 2.8 2.8 ...
There are 56 observations of 3 variables
Question 4
iris3 <- iris2 %>%
arrange(desc(Sepal.Length))
head(iris3)
## Species Sepal.Length Sepal.Width
## 1 virginica 7.9 3.8
## 2 virginica 7.7 3.8
## 3 virginica 7.7 2.6
## 4 virginica 7.7 2.8
## 5 virginica 7.7 3.0
## 6 virginica 7.6 3.0
Question 5
iris4 <- iris3 %>%
mutate(Sepal.Area = Sepal.Length*Sepal.Width)
str(iris4)
## 'data.frame': 56 obs. of 4 variables:
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ Sepal.Length: num 7.9 7.7 7.7 7.7 7.7 7.6 7.4 7.3 7.2 7.2 ...
## $ Sepal.Width : num 3.8 3.8 2.6 2.8 3 3 2.8 2.9 3.6 3.2 ...
## $ Sepal.Area : num 30 29.3 20 21.6 23.1 ...
There are 56 observations of 4 variables
Question 6
iris5 <- iris4 %>%
summarise(
Avg.Sepal.Width = mean(Sepal.Width),
Avg.Speal.Length = mean(Sepal.Length),
Sample.Size = n())
Question 7
iris6 <- iris4 %>%
group_by(Species) %>%
summarise(
Avg.Sepal.Width = mean(Sepal.Width),
Avg.Speal.Length = mean(Sepal.Length),
Sample.Size = n())
print(iris6)
## # A tibble: 2 × 4
## Species Avg.Sepal.Width Avg.Speal.Length Sample.Size
## <fct> <dbl> <dbl> <int>
## 1 versicolor 2.99 6.48 17
## 2 virginica 3.06 6.79 39
Question 8
irisFinal <- iris %>%
filter(Species == "virginica"| Species == "versicolor") %>%
filter(Sepal.Length > 6 & Sepal.Width >2.5) %>%
select(Species, Sepal.Length, Sepal.Width) %>%
arrange(desc(Sepal.Length)) %>%
mutate(Sepal.Area = Sepal.Length*Sepal.Width) %>%
group_by(Species) %>%
summarise(
Avg.Sepal.Width = mean(Sepal.Width),
Avg.Speal.Length = mean(Sepal.Length),
Sample.Size = n())
Question 9
irisLonger <- iris %>%
pivot_longer(cols = c(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width),
names_to = "Measure",
values_to = "Value")
head(irisLonger)
## # A tibble: 6 × 3
## Species Measure Value
## <fct> <chr> <dbl>
## 1 setosa Sepal.Length 5.1
## 2 setosa Sepal.Width 3.5
## 3 setosa Petal.Length 1.4
## 4 setosa Petal.Width 0.2
## 5 setosa Sepal.Length 4.9
## 6 setosa Sepal.Width 3